English Version | 中文版
中文版 | 英文版
Jinxun Liu
发布时间:2018-11-15 来源:国际化学理论中心(ICCT)网站英文版 浏览:23

Name:  Jinxun Liu(刘进勋)

Address:  School of Chemistry and Materials Science, University of Science and Technology of China (USTC)Anhui, Hefei

Tel: 0551-63602195

E-mail: jxliu86@ustc.edu.cn

 

RESEARCH INTERESTS

Theoretical and Computational Catalytic Chemistry:

1. C1 catalytic chemistry, environmental catalysis, electrocatalysis

2. Microscopic mechanism and microscopic kinetic simulation of catalytic reaction

3. Theoretical study on the active phase structure of nanocatalysts under reaction atmosphere

4. High-efficiency catalyst optimization design based on artificial intelligence and machine learning methods based on big data

 

EDUCATION AND RESEARCH EXPERIENCE

2020.9    Specially Appointed Researcher University of Science and Technology of China

2018.4- 2020.8    Postdoctoral fellow University of Michigan, USA

2015.5- 2018.4    Postdoctorate Eindhoven University of Technology, The Netherlands

2009.9- 2015.4    Ph.D. Dalian Institute of Chemical Physics, Chinese Academy of Sciences

2005.9-2009.6    Bachelor Degree, Zhengzhou University

 

REPRESENTATIVE PUBLICATIONS

1. First-Principles Microkinetics Simulations of Electrochemical Reduction of CO2 over Cu Catalysts. Zijlstra, B.#; Zhang, X.#; Liu, J.-X.#; Filot, I. A. W.; Zhou, Z.; Sun, S.; Hensen, E. J. M., Electrochim. Acta 2020, 335, 135665.

2. CO Activation and Methanation Mechanism on Hexagonal Close-Packed Co Catalysts: Effect of Functionals, Carbon Deposition and Surface Structure. Su, H.-Y.; Yu, C.; Liu, J.-X.; Zhao, Y.; Ma, X.; Luo, J.; Sun, C.; Li, W.-X.; Sun, K., Catal. Sci. Technol. 2020, 10, 3387-3398.

3. Compensation between Surface Energy and hcp/fcc Phase Energy of Late Transition Metals from First-Principles Calculations. Lin, H.#; Liu, J.-X.#; Fan, H.; Li, W.-X., J. Phys. Chem. C 2020, 124, 11005-11014.

4. Understanding the Impact of Defects on Catalytic CO Oxidation of LaFeO3-Supported Rh, Pd, and Pt Single-Atom Catalysts. Zhang, L.; Filot, I. A. W.; Su, Y. Q.; Liu, J. X.; Hensen, E. J. M., J. Phys. Chem. C 2019, 123, 7290-7298.

5. Interplay between Site Activity and Density of bcc Iron for Ammonia Synthesis Based on First-Principles Theory. Zhang, B. Y.; Su, H. Y.; Liu, J. X.; Li, W. X., Chemcatchem 2019, 11, 1928-1934.

6. Influence of Cobalt Crystal Structures on Activation of Nitrogen Molecule: A First-Principles Study. Zhang, B. Y.; Chen, P. P.; Liu, J. X.*; Su, H. Y.; Li, W. X.*, J. Phys. Chem. C 2019, 123, 10956-10966.

7. Surpassing the Single-Atom Catalytic Activity Limit through Paired Pt-O-Pt Ensemble Built from Isolated Pt1 Atoms. Wang, H.#; Liu, J. X.#; Allard, L. F.; Lee, S.; Liu, J.; Li, H.; Wang, J.; Wang, J.; Oh, S. H.; Li, W.; Flytzani-Stephanopoulos, M.; Shen, M.; Goldsmith, B. R.; Yang, M., Nat. Commun. 2019, 10, 3808.

9. Single Ru Sites-Embedded Rutile TiO2 Catalyst for Non-Oxidative Direct Conversion of Methane: A First-Principles Study. Ma, X.; Sun, K.; Liu, J.-X.; Li, W.-X.; Cai, X.; Su, H.-Y., J. Phys. Chem. C 2019, 123, 14391-14397.

10. Two-to-Three Dimensional Transition in Neutral Gold Clusters: The Crucial Role of Van Der Waals Interactions and Temperature. Goldsmith, B. R.; Florian, J.; Liu, J.-X.; Gruene, P.; Lyon, J. T.; Rayner, D. M.; Fielicke, A.; Scheffler, M.; Ghiringhelli, L. M., Phys. Rev. Mater. 2019, 3, 016002.

11. Carbon Monoxide Activation on Cobalt Carbide for Fischer–Tropsch Synthesis from First-Principles Theory. Chen, P.-P.#; Liu, J.-X.#; Li, W.-X., ACS Catal. 2019, 9, 8093-8103.

12. Optimum Cu Nanoparticle Catalysts for CO2 Hydrogenation Towards Methanol. Zhang, X.#; Liu, J.-X.#; Zijlstra, B.; Filot, I. A. W.; Zhou, Z.; Sun, S.; Hensen, E. J. M., Nano Energy 2018, 43, 200-209.

13. Transition Metal Doping of Pd (111) for the NO+CO Reaction. Zhang, L.; Filot, I. A.; Su, Y.-Q.; Liu, J.-X.; Hensen, E. J., J. Catal. 2018, 363, 154-163.

14. Highly Active and Stable CH4 Oxidation by Substitution of Ce4+ by Two Pd2+ Ions in CeO2(111). Su, Y.-Q.; Liu, J.-X.; Filot, I. A. W.; Zhang, L.; Hensen, E. J. M., ACS Catal. 2018, 8, 6552-6559.

15. Machine Learning for Heterogeneous Catalyst Design and Discovery. Goldsmith, B. R.; Esterhuizen, J.; Liu, J. X.; Bartel, C. J.; Sutton, C., AIChE J. 2018, 64, 2311-2323.

16. Carbon Induced Selective Regulation of Cobalt-Based Fischer-Tropsch Catalysts by Ethylene Treatment. Zhai, P.; Chen, P.-P.; Xie, J.; Liu, J.-X.; Zhao, H.; Lin, L.; Zhao, B.; Su, H.-Y.; Zhu, Q.; Li, W.-X.; Ma, D., Faraday Discuss. 2017, 197, 207-224.

17. Reconstruction of the Wet Chemical Synthesis Process: The Case of Fe5C2 Nanoparticles. Yao, S.; Yang, C.; Zhao, H.; Li, S.; Lin, L.; Wen, W.; Liu, J. X.; Hu, G.; Li, W.; Hou, Y., J. Phys. Chem. C 2017, 121, 5154-5160.

18. First-Principles Study of Structure Sensitivity of Chain Growth and Selectivity in Fischer–Tropsch Synthesis Using Hcp Cobalt Catalysts. Su, H.-Y.; Zhao, Y.; Liu, J.-X.; Sun, K.; Li, W.-X., Catal. Sci. Technol. 2017.