Title | First Principles Studies of Oxygen Cycle Electrocatalysis: Multifunctional Materials and Reactivity Trends |
Reporter | Dr. Zhenhua Zeng |
Reporter’s institution | Purdue University |
report time | |
Report location | Conference room on the 9th floor(9004)of Hefei National Laboratory for Physical Sciences at the Microscale |
organizer | Hefei National Laboratory for Physical Sciences at the Microscale,International Center for Chemical Theory (ICCT),Overseas Expertise Introduction Center for Discipline Innovation, School of Chemistry and Materials Science |
Report introduction | Abstract: Water splitting to generate O2 and H2 fuel has been a major focus of (photo)electrochemical energy storage and conversion efforts, but many challenges remain. In this talk, I will begin by showing our recent efforts to elucidate the catalytically active phase and OER mechanism on NiFe layered double hydroxides by combining electrochemical measurements, operando experiments, DFT calculations, and ab initio molecular dynamics simulations. Next, for HER, I will introduce the methodologies we have recently developed towards the highly accurate prediction of Pourbaix diagram of transition metal (oxy)hydroxides. Subsequently, using monolayer Ni (oxy)hydroxide films as an example, I will describe a simple scheme to study the structures and the stability of these films on precious metal surfaces. I will show how the ultrathin films can be dramatically stabilized with respect to the corresponding bulk analogs. Then, using the hydrogen evolution reaction as an example, I will demonstrate how these techniques can be applied to understand the steady state, the active phases, and the catalytic mechanism of bi-functional interfaces. I will then demonstrate the extension of the present understanding to real-world catalysts, i.e. precious metal nanoparticles supported on ultrathin transition metal (oxy)hydroxide films. Finally, I will show this understanding can be used to design new bi-functional catalysts with improved performances. If time permits, I will also show our recent work on tunable intrinsic strain in two-dimensional transition metal electrocatalysts for the oxygen reduction reaction.
About the speaker: Dr. Zhenhua Zeng graduated from Dalian Institute of Chemical Physics, Chinese Academy of Sciences in 2010, under the tutelage of Researcher Weixue Li. After graduating from his Ph.D., he successively conducted first-principles research on fuel cell, electrocatalytic mechanism in electrolysis, and surface and interface characteristics of electrocatalysts at the Technical University of Denmark, Argonne National Laboratory and Purdue University, and achieved a series of innovative Research results, published many first author and corresponding author papers in internationally renowned academic journals such as Science and NatureEnergy. |